Exercise 22

Find the limit or show that it does not exist.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+1}}
$$

Solution

Evaluate the limit using the limit laws after factoring out the highest power of x in the denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+1}} & =\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}\left(1+\frac{1}{x^{4}}\right)}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2} \sqrt{1+\frac{1}{x^{4}}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{x^{4}}}} \\
& =\frac{\lim _{x \rightarrow \infty} 1}{\lim _{x \rightarrow \infty} \sqrt{1+\frac{1}{x^{4}}}} \\
& =\frac{\lim _{x \rightarrow \infty} 1}{\sqrt{\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{4}}\right)}} \\
& =\frac{\lim _{x \rightarrow \infty} 1}{\sqrt{\lim _{x \rightarrow \infty} 1+\lim _{x \rightarrow \infty} \frac{1}{x^{4}}}} \\
& =\frac{1}{\sqrt{1+0}} \\
& =1
\end{aligned}
$$

